Metric Anomaly Detection via Asymmetric Risk Minimization
نویسندگان
چکیده
We propose what appears to be the first anomaly detection framework that learns from positive examples only and is sensitive to substantial differences in the presentation and penalization of normal vs. anomalous points. Our framework introduces a novel type of asymmetry between how false alarms (misclassifications of a normal instance as an anomaly) and missed anomalies (misclassifications of an anomaly as normal) are penalized: whereas each false alarm incurs a unit cost, our model assumes that a high global cost is incurred if one or more anomalies are missed. We define a few natural notions of risk along with efficient minimization algorithms. Our framework is applicable to any metric space with a finite doubling dimension. We make minimalistic assumptions that naturally generalize notions such as margin in Euclidean spaces. We provide a theoretical analysis of the risk and show that under mild conditions, our classifier is asymptotically consistent. The learning algorithms we propose are computationally and statistically efficient and admit a further tradeoff between running time and precision. Some experimental results on real-world data are provided.
منابع مشابه
Neyman-Pearson classification under a strict constraint
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i), its probability of type I error is below a pre-specifi...
متن کاملNeyman-Pearson Classification, Convexity and Stochastic Constraints
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i) its probability of type I error is below a pre-specifie...
متن کاملOvercomplete Frame Thresholding for Acoustic Scene Analysis
In this work, we derive a generic overcomplete frame thresholding scheme based on risk minimization. Overcomplete frames being favored for analysis tasks such as classification, regression or anomaly detection, we provide a way to leverage those optimal representations in real-world applications through the use of thresholding. We validate the method on a large scale bird activity detection tas...
متن کاملAnomaly Detection using Feature Selection and SVM Kernel Trick
Analysis of system security becomes a major task for researchers. Intrusion detection plays a vital role in the security domain in these days, Internet usage has been increased enormously and with this, the threat to system resources has also increased. Anomaly based intrusion changes its behaviour dynamically, to detect these types of intrusions need to adopt the novel approaches are required....
متن کاملDistance Metric Learning for Conditional Anomaly Detection
Anomaly detection methods can be very useful in identifying unusual or interesting patterns in data. A recently proposed conditional anomaly detection framework extends anomaly detection to the problem of identifying anomalous patterns on a subset of attributes in the data. The anomaly always depends (is conditioned) on the value of remaining attributes. The work presented in this paper focuses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011